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A new algorithm for the volume tracking of interfaces in two dimensions is pre-
sented. The algorithm is based upon a well-defined, second-order geometric solution
of a volume evolution equation. The method utilizes local discrete material volume
and velocity data to track interfaces of arbitrarily complex topology. A linearity-
preserving, piecewise linear interface geometry approximation ensures that solutions
generated retain second-order spatial accuracy. Second-order temporal accuracy is
achieved by virtue of a multidimensional unsplit time integration scheme. We detail
our geometrically based solution method, in which material volume fluxes are com-
puted systematically with a set of simple geometric tasks. We then interrogate the
method by testing its ability to track interfaces through large, controlled topology
changes, whereby an initially simple interface configuration is subjected to vortical
flows. Numerical results for these strenuous test problems provide evidence for the
algorithm’s improved solution quality and accuracy.c© 1998 Academic Press
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1. INTRODUCTION

Volume tracking methods have enjoyed widespread use and success since the mid-1970s,
yet they possess solution algorithms that are too often perceived as being heuristic and
without mathematical formalism. Part of this misperception lies in the difficulty of applying
standard hyperbolic PDE numerical analysis tools, which assume algebraic formulations,
to a method that is largely geometric in nature (hence, the more appropriate termvolume
tracking). To some extent the lack of formalism in volume tracking methods, manifested
as an obscure underlying methodology, has impeded progress in evolutionary algorithmic
improvements.

1 This work performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory
under Contract W-7405-ENG-36.
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In this paper we clarify the methodology underlying modern volume tracking methods,
and, in the process, present a new two-dimensional algorithm that is constructed from a
geometric solution of a volume evolution equation. The solutions are second order in space
through the use of a linearity-preserving piecewise-linear interface geometry approximation.
Second-order temporal accuracy is realized with a novel multidimensional unsplit time
integration scheme. We describe our solution method whereby volume fluxes are computed
with a set of straightforward geometric tasks.

Basic features of volume tracking methods.It is first instructive to review the common
features of most volume tracking methods. To begin, fluid volumes are initialized in each
computational cell from a specified interface geometry. This task requires computing fluid
volumes in each cell containing the interface (hereafter referred to asmixedcells). Exact
interface information is then discarded in favor of the discrete volume data. The volume data
is traditionally retained as volume fractions (denoted asf hereafter), whereby mixed cells
will have a volume fractionf between zero and one, and cells without interfaces (purecells)
will have a volume fractionf equal to zero or unity. Since a unique interface configuration
does not exist once the exact interface location is replaced with discrete volume data, detailed
interface information cannot be extracted until an interface isreconstructed. The principal
reconstruction constraint is local volume conservation, i.e., the reconstructed interface must
truncate cells with a volume equal to the discrete fluid volumes.

Interfaces are “tracked” in volume tracking methods by evolving fluid volumes forward
in time with solutions of an advection equation. At any time in the solution, exact interface
locations are not known; i.e., a given distribution of volume data does not guarantee a unique
interface. Interface geometry must be inferred, based on local volume data and the assump-
tions of the particular algorithm, before interfaces can be reconstructed. The reconstructed
interface is then used to compute the volume fluxes necessary to integrate the volume evo-
lution equations. Typical implementations of these algorithms are one-dimensional, with
multidimensionality obtained through operator splitting [1].

We begin in Section 2 with a historical perspective of volume tracking methods. Next, in
Section 3, governing fluid volume equations are derived from basic principles. This deriva-
tion is straightforward for flows that are incompressible, but considerably more involved
for flows with compressibility. In Section 4 our solution method is detailed with the help of
a set of concise geometric operations. (A flow chart of the principal algorithmic steps dis-
cussed in Section 4 is shown in Fig. 1.) Finally, in Section 5, we interrogate our method by
computing gross interface topology changes, whereby an initially simple interface config-
uration is subjected to flows with appreciable vorticity (see also Appendix B). An example
of the performance of our volume-tracking method on a simpler test (one without topology
changes) is shown in Fig. 2, where a slotted-cylinder [2] is shown before and after one
revolution.

2. HISTORICAL PERSPECTIVE

Table 1 summarizes the salient features of notable volume tracking methods published
since 1974. Listed for each method are important aspects of the interface reconstruction
and volume advection algorithms. Identifiable reconstruction features include the assumed
interface geometry, which tends to be either piecewise constant, piecewise constant/“stair-
stepped,” or piecewise linear; and the method used for computing the interface normal, which



   

FIG. 1. Flow chart of the four basic steps comprising our volume-tracking method: (1) discrete material
volume data is provided on the computational domain; (2) a piecewise linear interface is reconstructed (Sec-
tion 4.2); (3) material volume fluxes are computed as truncation volumes (here shown for the unsplit integration
discussed in Section 4.3); and (4) the volumes are integrated to a new time level (Section 4.4). Each step utilizes
the geometric toolbox described in Section 4.1.

FIG. 2. Performance of our method on Zalesak’s slotted-cylinder test problem [2] using a 100× 100 grid.
Shaded portions represent a reconstruction of the initial conditions, whereas the line segments delineate the slotted
cylinder after one revolution. The shaded region boundary and line segments virtually overlay, except for high
curvature regions (i.e., the sharp corners), where smoothing has occurred. The corner errors, however, are quite
small in comparison to more traditional methods that cannot maintain a sharp interface.
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TABLE 1

Reconstructed Interface Geometry and Time Integration Method Used in a Variety

of Published Volume Tracking Algorithms

Author(s) Reconstructed interface geometry Time integration

DeBar [3] Piecewise linear, operator split Operator split
Noh and Woodward [4] Piecewise constant, operator split Operator split
Hirt and Nichols [5] Piecewise constant, stair-stepped, multidimensional Operator split
Chorin [6] Piecewise constant, stair-stepped, multidimensional Operator split
Barr and Ashurst [7] Piecewise constant, stair-stepped, multidimensional Operator split
Ashgriz and Poo [8] Piecewise linear, operator split Operator split
Youngs [9] Piecewise linear, multidimensional Operator split
Pilliod and Puckett [10, 11] Piecewise linear, multidimensional Multidimensional

is either one-dimensional (operator split) or multidimensional. Similarly, time integration of
the volume advection equation can be constructed in an operator split or multidimensional
fashion. Below we summarize briefly the chronology and impact of these developments.

2.1. The Genesis of Volume Tracking

Within a short period of time in the early 1970s, the first three volume tracking meth-
ods were introduced: DeBar’s method [3], Hirt and Hichols’ VOF (for volume-of-fluid)
method [12, 13], and Noh and Woodward’s SLIC (for simple line interface calculation)
method [4]. Each of these methods chose a different reconstructed interface geometry: the
DeBar algorithm used a piecewise linear approximation, the VOF method used a piece-
wise constant/“stair-stepped” approximation, and the SLIC algorithm invoked a piecewise
constant approximation. As shown in Table 1, most volume tracking algorithms published
to date fall into one of these three interface reconstruction categories; piecewise constant,
piecewise constant/stair-stepped, or piecewise linear. DeBar’s piecewise linear choice for
the reconstructed interface geometry is still generally preferred in modern volume tracking
algorithms.

The SLIC method approximates interfaces as piecewise constant, where interfaces within
each cell are assumed to be lines (or planes in three dimensions) aligned with one of the
logical mesh coordinates. This choice of a simpler interface geometry (relative to Debar’s
piecewise linear choice) appears to have been made to facilitate treatment of multiple (>2)
materials within a given mixed cell. In piecewise constant/stair-stepped methods such as
VOF, interfaces are also forced to align with mesh coordinates, but are additionally allowed
to “stair-step” (align with more than one mesh coordinate) within each cell, depending upon
the local distribution of discrete volume data.

Interface normals are computed in DeBar’s method with one-dimensional volume frac-
tion differences, i.e., by considering only those cells sharing a face across which volume
fluxes are to be estimated. In this sense the reconstruction can be considered “operator split”
since the interface normal follows from one-dimensional differences based upon the current
advection sweep direction. A method similar to DeBar’s method is described in the more
recent work of Norman and Winkler [14], where it is attributed to earlier work of LeBlanc.
The SLIC method, as in DeBar’s method, estimates interface normals with operator split
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differences.1 Modern SLIC implementations have improved slightly via use of multidi-
mensional operators (3× 3 stencil in two dimensions) for the normal and center-of-mass
coordinates to aid in placing the interface within the cell [15]. The VOF algorithm also uses
a multidimensional operator in determining interface orientation. This information helps
position the reconstructed stair-stepped interface within each cell.

Another pioneering development is attributed to James LeBlanc of Lawrence Livermore
National Laboratory. LeBlanc’s method, as described by Bowers and Wilson [16, 17],
has an algebraic (rather than geometric) basis. LeBlanc’s scheme for the transport of vol-
umes to and from mixed cells (the so-called “mixed-to-mixed” cell transport), however,
also has a geometric interpretation. Close scrutiny of this mode of transport reveals that
LeBlanc’s “area” factors are nearly identical to those used in a subsequent piecewise linear
scheme devised by Youngs (discussed later) [9].

Many early volume tracking methods were devised and formulated algebraically (i.e.,
using combinations of upwind and downwind fluxes) rather than geometrically. In fact, some
low-order methods (e.g., SLIC or VOF) can be derived a number of ways: algebraically,
geometrically, or heuristically. The chosen derivation for these cases is largely a matter of
taste. For piecewise linear methods, however, a geometric framework is preferable because
concise algebraic descriptions can be difficult, especially in three dimensions. To facilitate
comparisons with our piecewise linear method, therefore, we will interpret volume tracking
methods geometrically where possible, while keeping in mind this interpretation might be
contrary to the original authors’ philosophy. For a current reference on algebraic approaches
to volume tracking methods, see the recent paper by Rudman [18].

2.2. Piecewise Constant Volume Tracking Methods

Many piecewise constant volume tracking algorithms have been published subsequent
to the VOF and SLIC algorithms, e.g., see Chorin [6] and Barr and Ashurst [7]. As seen in
Table 1, newer versions of these methods offered improvements such as a multidimensional
reconstruction algorithm, but operator-split time integration techniques have still been relied
upon. In general, these methods have been evolutionary, but still retained the simplistic
piecewise constant geometry assumption.

A notable feature of the VOF method is that its volume fluxes can be formulated alge-
braically, i.e., without needing an exact reconstructed interface position. The volume fluxes
can be expressed as a weighted sum of upwind and downwind contributions, depending
upon the orientation of the interface relative to the local flow direction. If the reconstructed
interface is parallel to the flow, an upwind flux is used; otherwise a portion of downwind
flux is added to counteract numerical diffusion brought about by the piecewise constant
upwinding. This approach, which falls into the general family of flux-corrected transport
methods [2, 19] (simplifying its analysis), was the underlying theme behind the design of
the VOF method. This flux-limiting methodology has also been used recently to define
modern variants, e.g., see [18, 20].

A feature characteristic of piecewise constant volume tracking methods (with or without
stair-stepping) is the unphysical creation of what Noh and Woodward termed [4]flotsam
(“floating wreckage”) andjetsam(“jettisoned goods”). These terms are appropriate for

1 In a true sense DeBar’s linear reconstruction is not finding a “normal” to the interface, but rather estimating a
linear distribution of the volumes based solely on one-dimensional information.
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isolated, submesh-size material bodies that separate from the main material body because
of errors induced by the volume tracking algorithm. These material remnants tend to be
ejected from interfaces in piecewise constant volume tracking methods when the flow
has significant vorticity and/or shear near the interface. An example of this behavior is
demonstrated clearly with the SLIC results presented later. The presence of flotsam near
interfaces can severely compromise the overall interfacial flow solution, especially when
interface dynamics (e.g., surface tension and phase change) are also being modeled.

2.3. Piecewise Linear Volume Tracking Methods

In the early 1980s, volume tracking methods were advanced significantly by the new
piecewise linear schemes of Youngs and coworkers [9, 21]. Youngs’ methods positioned
each reconstructed interface line, defined by a slope and intercept, within the volume frac-
tion control volume (cell). This is in contrast to DeBar’s method, where the reconstructed
interface was positioned across cell faces. The slope of the line is given by the interface
normal (gradient of the volume fractions), and the intercept follows from invoking vol-
ume conservation. The interface normal is determined with a multidimensional algorithm
(9-point stencil in two dimensions, 27-point stencil in three) that does not depend upon
the sweep direction. Interestingly, Youngs’ second method cannot reconstruct a volume
distribution resulting from a line despite its choice of a linear basis in a cell. The methods
of Youngs, formulated for both two [9] and three [21] dimensions on orthogonal meshes,
were subsequently adopted in many high-speed hydrocodes involving material interfaces
[22–25].

The two-dimensional (2D) and three-dimensional (3D) piecewise linear methods devel-
oped by Youngs differed by more than just dimensionality. Although the time integration
scheme for both methods was identical (operator splitting), the normal used for interface
reconstruction was more accurate in the 2D algorithm than the 3D algorithm. The interface
normal computed in Youngs’ 2D algorithm will reproduce a line, regardless of its orienta-
tion on an orthogonal mesh, and is, therefore, second-order accurate (according to Pilliod
and Puckett’s criteria [10, 26]). The 3D normal will reproduce a plane for certain simple
orientations; hence, the algorithm is not formally second-order accurate. We will refer to
Youngs’ 2D and 3D methods as “Youngs’ first method” and “Youngs’ second method,” re-
spectively, because of this important accuracy difference. It is obviously desirable to retain
second-order accuracy in a piecewise linear volume tracking method, otherwise a line (or
plane in 3D) will not be preserved after simple translation.

Many extensions and enhancements to the significant work of Youngs have occurred
since its introduction. Johnson extended Youngs’ 2D method to nonorthogonal meshes
[22]. The first use adaptive mesh refinement (AMR) in a volume tracking method can
be found in [27]. Puckett and Saltzman [26, 28] coupled an AMR algorithm [29, 30] to
the 3D method. Pilliod and Puckett have recently refined Youngs’ algorithm in two di-
mensions with an unsplit, “corner-coupled” time integration scheme extension that has
second-order accuracy through the use of an improved interface normal [10, 11]. A similar
method is used in [15] for comparison with other interface tracking methodologies. Mosso
[31] has recently introduced new methods for second-order interface normal approxima-
tions on irregular meshes and devised a new second-order time integration scheme based
on the concept of remapping a displaced mesh. This approach couples nicely with arbi-
trary Lagrangian–Eulerian (ALE) schemes. Finally, Kothe and coworkers have extended
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Youngs’ 3D method to unstructured meshes [32] by introducing a second-order Runge–
Kutta method for time integration and a robust method for plane truncation of arbitrary
polyhedra.

The more recent FLAIR method [8] is similar to DeBar’s method, in that piecewise linear
interfaces are reconstructed across cell faces rather than within a volume bounded by cell
faces. The face-centering of piecewise linear interfaces in the FLAIR method results in a re-
constructed interface that can be more continuous than a cell-centered reconstruction. Since
the FLAIR time-integration scheme is not presented in detail, however, direct comparisons
with the current method are not made in this paper.

We will refer to the family of piecewise methods introduced by Youngs (and its extensions)
as PLIC (for piecewise linear interface calculation) methods. Details and capabilities of
many PLIC volume tracking methods unfortunately remain obscure because of insufficient
widespread publication. Despite this fact, PLIC methods have been used successively for
high speed hydrodynamic calculations this past decade by a host of researchers. Progress
is currently being made by the authors [33, 34] and others [35] toward applying PLIC to
incompressible multiphase flows.

As demonstrated later, the PLIC piecewise linear interface approximation, coupled with
a second-order time integration scheme, results in a second-order algorithm that clearly
outperforms the above-mentioned classes of first-order piecewise constant methods. Despite
the notable improvements offered by PLIC, variants of piecewise constant (SLIC) and
piecewise constant/stair-step (VOF) methods have remained in widespread use because of
their simple implementation.

An important contribution in the SLIC method was a prescription for cells containing mul-
tiple materials. As an example, consider the actual three-material configuration in Fig. 4.
Most volume tracking methods model this situation by first reconstructing the material
one/two–three interface (by combining material two and three volume fractions), then the
one–two/three interface (by combining the material one and two volume fractions). For ex-
ample, the reconstructed SLIC and PLIC interfaces for this configuration are shown in Fig. 4.
The approximation will unfortunately yield reconstructed interfaces that are positioned cor-
rectly only in the simplest of cases. This “onion-skinning” approach for reconstructing mul-
tiple interfaces can unfortunately lead to interface intersections, which causes fluid volume
to be incorrectly associated with more than one material. This intersection problem is more
acute with PLIC methods. Another problem inherent to the onion-skin model is the required
ordering (prioritizing) of material volume fluxes at cell boundaries. Multiple material mod-
els superior to these onion-skin models must be devised before volume tracking methods
can reliably model complex topology multiple-material flows.

We now derive the governing volume evolution equations. The evolution equations are
trivial for incompressible flows, but require modeling assumptions for compressible flows.

3. FLUID VOLUME EVOLUTION EQUATIONS

We first derive material volume evolution equations in the presence of an incompressible
flow field. This is a straightforward manipulation of standard consistency relations. We
begin by definingVk, the volume of materialk,

Vk =
∫
αk(V) dV, (1a)
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FIG. 3. Reconstructed interfaces (shaded regions) for a circle (continuous line) using the SLIC and PLIC
methods. The piecewise constant approximation in SLIC forces the reconstruction to align with selected mesh
logical coordinates, whereas the piecewise linear approximation in PLIC allows the reconstruction to align naturally
with the interface. Numbers in the cells denote volume fractions. (a) SLIC reconstruction. (b) PLIC reconstruction.
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FIG. 4. Volume-tracking methods traditionally model multiple materials with an onion-skin algorithm. Shown
in the middle is an example of three-material configuration, with SLIC and PLIC representations shown on the
left and right, respectively. It should be noted that if care is not taken with the PLIC method, the linear interfaces
can overlap in an unphysical manner.

whereα(V) is an indicator function given by

αk(V) =
{

1, if fluid k is present;
0, otherwise.

(1b)

GivenVk, the volume fractionfk is defined as

fk = Vk

V
, (2)

where the total volumeV is
∫

dV. We require that the material volumes fill all space,

V =
∑

k

Vk,

or, equivalently,
∑

k fk = 1.
It is readily apparent in the following that volume tracking methods are naturally control

volume methods and the volume fractionsf (dropping thek subscript) are integrally aver-
aged quantities. Given a flow fieldu, a standard advection equation governs the evolution
of f ,

d f

dt
= 0→ ∂ f

∂t
+ u ·∇ f = 0. (3a)

If the flow field is incompressible, i.e.,∇ · u = 0, the f advection equation can be recast in
conservative form:

∂ f

∂t
+ u ·∇ f → ∂ f

∂t
+∇ · (u f ) = 0. (3b)

An equivalent statement for (3b) is that material volumes remain constant on streamlines.
Incompressibility allows this statement to be further expressed as a conservation law. This
confirms our intuition that incompressible flow conserves volume, and it also conserves the
apportioning of material volumes into the total volume (except for any boundary flux).

4. METHOD OF SOLUTION

We now describe our algorithm for the geometric solution of the volume evolution equa-
tions given in Section 3. Our algorithm appeals to geometry because material volume fluxes,
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defined as material volumes passing through a given cell face over one time step, are the
n-sided polygons formed by interface line segments passing through total volume flux
polygons. These fluxes are computed in a straightforward and systematic manner using
algorithms for lines intersectingn-sided polygons. Our algorithms are constructed from a
“geometric toolbox,” as described in Section 4.1. By using this toolbox, heuristic, “case-
by-case” logic is not required to find solutions. We also discuss our unsplit method for the
time integration of the volume evolution equations.

After presenting our geometric toolbox in Section 4.1, we describe the piecewise linear
interface reconstruction in Section 4.2 (details are given in Appendix A), material vol-
ume flux computation in Section 4.3, and time integration in Section 4.4. Examples of the
method’s performance on basic translation and rotation tests can be found in Appendix B.

4.1. A Geometric Toolbox

Our 2D PLIC method requires the following geometric functions:

1. Line–line intersection
2. Point location
3. Polygon collection
4. Polygon area.

These functions are simple, well-defined, and widely used, for example, in the field of com-
putational geometry [36]. Concise algorithm design and implementation is made possible
with these functions, as is evident later in this section.2 The capabilities of this toolbox
can also be extended to accommodate a 3D PLIC method if additional functions such as
plane/surface intersection are incorporated [32].

Our geometric functions assume that a line is defined by the equation

n · x+ ρ = 0, (4)

wheren is the normal to the line,x is a point on the line, andρ is the line constant.
Computational cells are defined (in 2D) asn-sided polygons given by a set ofn vertices
Xv = (xv, yv). Any cell having volume fractionsf between zero and one will possess an
interface defined by (4). The interface line equation will in general be different in each
interface cell; i.e., values ofn andρ will vary (from cell to cell) since the overall interface
geometry is approximated as piecewise linear. As discussed later in this section, values ofn
andρ in (4) result from a volume fraction gradient and enforcement of volume conservation,
respectively. For each interface cell, the interface line divides space into regions inside the
fluid and outside the fluid, depending upon the convention chosen forn. We choosen to
point into the fluid; hence, (4) will be positive for any pointx lying within the fluid, zero
for any pointx lying on the line, and negative for any pointx lying outside of the fluid.

Below we summarize each of the four geometric functions.
Function 1: Line–line intersection.The most basic geometric function is one that locates

the point of intersection between two lines. If the lines are actually line segments, as in
our PLIC method, steps must be taken to determine if the intersection point is valid (i.e.,
lies within segments). The intersection point is found from a simultaneous solution of the
two line equations (with checks for parallel lines). By invoking this function only in cases

2 The source code for our geometric toolbox is available athttp://lune.mst.lanl.gov/Telluride/Text/

publications.html.
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FIG. 5. Typical example of a 4-sided polygon formed when an interface line truncates a computational cell.
Functions 1–4 in the text are performed sequentially to compute the area surrounded by this polygon. Arrows
indicate the line integration path.

where there must be a valid intersection point, costly checks for validity are avoided. A valid
intersection point will result when one end of one line segment lies “across” the intersection
point. This function is needed to find the points of intersection between the interface line
and any cell edge.

Function 2: Point location.Given a line defined by (4), a point location function returns
true if a point (xv, yv) lies inside the fluid, which is true if (4) is positive for (xv, yv). Given
a point (xi , yi ) on the interface, the point (xv, yv) lies within the fluid if

nx(xv − xi )+ ny(yv − yi ) > 0.

This function is needed to determine which of the cell verticesXv lie inside the fluid.
Function 3: Polygon collection.A polygon collection function collects the vertices

(xv, yv) of a n-sided polygon in counterclockwise order. The polygon vertices collected
for each interface cell are those cell vertices lying inside the fluid and interface line/cell
edge intersection points. A 4-sided polygon example is shown in Fig. 5. By definition, two
adjacent cell vertices are on opposite sides of the interface line if one cell vertex lies inside
the fluid and the other lies outside. The resultantn-sided polygon surrounds the fluid in that
cell, as seen in Fig. 5. This function is needed before the area inside then-sided polygon
can be computed.

The polygon collection function uses the output of Function 2, which initializes a boolean
variable that describes the “state” of cell vertices with respect to the interface (i.e., inside or
outside the fluid). A vertex state variable minimizes source code logic and enables robust
procedures. The benefits of this implementation are easily realized for the (fairly typical)
case of an interface line passing nearby a cell vertex (see Fig. 6). In this case a decision
regarding the identity of this cell vertex is forced (based on some prescribed tolerance),
thereby avoiding numerical difficulties. This problem and its solution are illustrated by the
two relevant cases in Fig. 6. The cost of cell vertex ambiguity situations is an extra vertex
that becomes associated with the truncated polygon.

Function 4: Polygon area.A polygon area function takes the vertices (xv, yv) of an
n-sided polygon, collected in counterclockwise order (the result of Function 3) and computes
the exact area enclosed by the polygon. In Cartesian geometry, the area enclosed by the
polygon is given by

A = 1

2

n∑
v=1

(xvyv+1− xv+1yv), (5)
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FIG. 6. Two examples of an interface line passing nearby a cell vertex. This vertex is “ambiguous” in that it
can be considered inside or outside the fluid, depending upon the prescribed tolerance of the boolean variable that
identifies the vertex as being inside or outside the fluid. In these figures, “T” means that the vertex is inside the
interface (true) and “F” means that the vertex is outside the interface (false). (a) The critical vertex is inside the
fluid. (b) The critical vertex is outside the fluid.

where vertexv = n+ 1 is assumed to coincide with vertexv = 1. In cylindrical geometry
having azimuthal (θ ) symmetry, the area (an azimuthally-symmetric volume) is given by

A = π

6

n∑
v=1

(rv + rv+1)(rvzv+1− rv+1zv). (6)

The single algorithmic change required for our method to perform correctly in 2D cylin-
drical rather than Cartesian geometry is the use of (6) instead of (5) for the polygon area
computation.

4.2. Reconstructing the Interface

Given the functions provided by our geometric toolbox, linear interface segments must
be reconstructedin each mixed cell. This reconstruction step requires line equation (4) to
be defined for each interface segment, so an interface normaln and line constantρ must be
determined. The line constantρ follows from enforcement of volume conservation, and the
interface normaln follows from volume fraction gradients. Interface reconstruction exam-
ples of simple volume fraction distributions (circles and squares) are given in Appendix A.
The examples in particular illustrate the importance of an accurate, linearity-preserving
estimate forn.

Determining the line constantρ is the most difficult reconstruction task because the value
of ρ is constrained by volume conservation. In other words, the value ofρ is constrained
such that the resulting line passes through the cell with a truncation volume equal to the
cell material volumeV . This determination requires inverting aV(ρ) relation, in whichV
can vary linearly, quadratically, or cubically withρ, depending upon the coordinate system
and the shape of then-sided polygon formed by the interface segment truncating the cell.
It is tempting to construct an algorithm for determiningρ based on a direct solution of
theV(ρ) relation. But, since this relation is often nonlinear and varies in each mixed cell,
due to its dependence upon local data, a “case-by-case” implementation results that is not
efficient (vectorizable or parallel), general, concise, or easily maintained and understood.
We instead choose to invert theV(ρ) relation iteratively in each mixed cell. The resulting
algorithm procedural logic is therefore independent of the mixed-cell properties and data.
As implemented, the algorithm is simple, robust, general, efficient, and easily understood.
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The line constantρ is found when the generally nonlinear function

f (ρ) = V(ρ)− V,

becomes zero. HereV(ρ) is the material volume in the cell bounded by the interface
segment (with line constant ofρ) and the portion of the cell edges within the material.
When these two volumes are equal (to within some tolerance), the interface segment is
declared “reconstructed” in that cell. A host of root-finding algorithms are available to find
the zero of this function, but we have found Brent’s method [37, Chap. 9] to give the best
results in practice. Bisection will converge, but is slow, and Newton’s method may diverge,
but Brent’s method invokes a combination of bisection and inverse quadratic interpolation
to find a near-optimal next guess forρ. This approach is well suited for ourV(ρ) function
sinceV often varies quadratically withρ (see Fig. 8). Newton’s method typically converges
in half the iterations of Brent’s method, but Brent’s method requires less computational
effort because an evaluation of the derivative ofV with respect toρ is not needed.

An intelligent initial guess forρ aids in efficient convergence (<4–6 iterations). We
currently initializeρ prior to the iteration in the following manner. Lines possessing the
interface normaln are passed through each vertex of the polygonal cell, and the resulting
truncation volumes are computed. Those two lines forming truncation volumes that bound
the actual material volume in that cell provide upper (ρmax) and lower (ρmin) bounds forρ.
Our initial guess forρ is then a linear average ofρmin andρmax.

Figure 7 illustrates the iterative progression of Brent’s algorithm in findingρ for an
example reconstruction. We summarize with an algorithm template for finding the interface
constantρ:

FIG. 7. An example of the iterative placement of an interface segment within a mixed cell using Brent’s
method, which prescribes a new value for interface line constantρ each iteration. The line is properly placed
after five iterations, although only the first three are shown here (after which progress is indistinguishable). Initial
bounding guesses (ρmin andρmax) for the line are also shown. This example corresponds to thef = 0.2 case in
Fig. 9b.
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Interface Reconstruction Template

1. Given an interface line segment, described by Eq. (4), truncate a mixed cell.
2. Find and assemble then vertices of the polygon formed by the those cell vertices

inside the fluid and the interface line/cell edge intersection points.
3. Compute the volume bounded by this polygon.
4. Determine if the polygon volume differs from the known fluid volume by some pre-

scribed tolerance.
5. If the volumes differ, use Brent’s method to find a new estimate forρ in Eq. (4) and

go back to step 1.
6. If the volumes do not differ, the interface line is declared reconstructed.

End template

If this template is applied only to mixed cells, an iterative search forρ is computationally
efficient, focusing efforts only where necessary. This approach is also attractive because
mixed cells usually comprise<10% of the total cells in the computational domain, even for
the most topologically complex cases. Also, because volume tracking methods are local in
nature, the increase in mixed cell number over a given time step is bounded because only
those cells that are mixed or directly adjacent to mixed cells experience a volume fraction
change. An example of the behavior of this algorithm is shown in Fig. 8, where the line
constantρ and iteration count as a function of fluid volume are shown for a given interface
normaln. The actual interface line placements are shown in Fig. 9.

4.3. Material Volume Fluxes

Integration of the material volume evolution equations discussed in Section 3 requires
the evaluation of material volume fluxesδV at each cell face. The fluxesδV represent the
volume of material passing through a given face during the current time step. The sum of
all material volume fluxes must equal the total volume flux, which for face(i + 1

2, j ) is

FIG. 8. An example of the variation of line constantρ and Brent’s method iteration count for a given interface
normaln. Note the linear and quadratic dependence ofρ as a function of fluid volume. The actual interface line
placements for a number of cases are given in Fig. 9. (a) Line constantρ as a function of fluid volume. (b) Interface
reconstruction iteration count as a function of fluid volume.
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FIG. 9. Interface line placements for the case shown in Fig. 8. Darker regions correspond to the fluid whose
interface is being reconstructed. (a)f = 0.1. (b) f = 0.2. (c) f = 0.3. (d) f = 0.4. (e) f = 0.5. (f) f = 0.6.
(g) f = 0.7. (h) f = 0.8. (i) f = 0.9.

given by ∑
k

δVk
i+1/2, j = δVi+1/2, j = 1t ui+1/2, j · A i+1/2, j , (7)

whereu is the velocity vector andA is the edge area vector.
To computeδV , two steps are required: (1) the polygons bounding the volume swept by

the velocity field over the time step must be constructed, and (2) the amount of materialk
must be found for these polygons. The machinery to accomplish the second step has been
discussed earlier (the geometric toolbox given in Section 4.1), but step 1 requires definition.

Here we develop both operator split and unsplit time integration schemes, which are
depicted schematically in Fig. 10. The operator split method constructs the solution in a
series of one-dimensional sweeps shown in Figs. 10a, b. Usually Strang splitting [1] is
employed to lessen the symmetry breaking effects of the operator splitting. A naive unsplit
method is shown in Fig. 10c. This method has undesirable overlapping volume flux regions.
In our unsplit method (Fig. 10d), the flow is considered to be completely multidimensional,
but the method can be constructed from the operator split method via systematic corrections
shown below.

As an example, consider the formation of edge flux volumes for anx-sweep of an operator
split method. A sample result is shown in Fig. 11a. The steps to form the edge flux polygon
for face (i + 1

2, j ) are outlined in the following template.

Edge Flux Polygon Template

1. Identify the vertices of the edge being evaluated, which form the first two vertices in
the flux polygon:(xi+1/2, j−1/2, yi+1/2, j−1/2), (xi+1/2, j+1/2,yi+1/2, j+1/2).

2. Given the velocity normal to this edge (ui+1/2, j ) and the time step (1t), trace charac-
teristically to locate the final vertices:(xi+1/2, j−1/2 − ui+1/2, j1t, yi+1/2, j−1/2),

(xi+1/2, j+1/2− ui+1/2, j1t, yi+1/2, j+1/2).

End template

The unsplit algorithm requires that corrections be made to the edge (operator split) flux
volume defined above. The corrections are defined by the velocity field assumed in the
algorithm. In our implementation, the corner velocity transverse to the direction of the
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FIG. 10. Face volume fluxesδV and their bounding polygons for three different time-integration schemes
in two dimensions. For operator-split integration, anx-direction sweep is made in (a), followed by ay-direction
sweep in (b). A naive unsplit method, shown in (c), is not recommended because face-adjacent polygons overlap,
hindering conservative, monotonic volume advection. In our unsplit method of (d), the polygons are constructed by
tracing along upwind characteristics, yielding a multidimensional, “corner-coupled” fluxing of material volumes.
Problems with an unsplit integration scheme can necessitate redistribution algorithms as shown in Fig. 12. (a) An
x-direction sweep of an operator-split method. (b) Ay-direction sweep of an operator-split method. (c) A naive
multi-dimensional unsplit method. (d) The unsplit multi-dimensional method.

edge under consideration is “upwinded” given the sign of the normal edge velocity. For
example ifui+1/2, j > 0, the velocitiesvi, j±1/2 will define the corner corrections to the
flux volume at the(i + 1

2, j ) edge. An example corner correction polygon is depicted in
Fig. 11b. The correction polygons are computed according to the following corner flux
polygon template.

Corner Flux Polygon Template

1. Identify the vertex of the corner being evaluated, which forms the first vertex in the
flux polygon:(xi+1/2, j+1/2, yi+1/2, j+1/2).

2. Using the velocity normal to this edge (ui+1/2, j ) and the time step (1t), trace charac-
teristically to the next vertex:(xi+1/2, j+1/2− ui+1/2, j1t, yi+1/2, j+1/2).
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FIG. 11. Edge and corner polygons formed at face(i + 1
2
, j ) when tracing back along a positive velocity

field. The edge polygon that encloses volume fluxδVi+1/2, j is defined by the four points in (a) for thex-sweep of
an operator-split time integration. For multidimensional unsplit time integration, the edge polygon in (a) must be
modified by corner fluxes such as the triangle in (b). (a) Quadrilateral edge volume flux polygon. (b) Triangular
corner volume flux polygon.

3. Using the upwinded transverse velocity at the corner, trace characteristically to the
final vertex:(xi+1/2, j+1/2 − ui+1/2, j1t, yi+1/2, j+1/2 − vi+1/2, j+1/21t). The value of
vi+1/2, j+1/2 is determined by the sign ofui+1/2, j . For example, ifui+1/2, j > 0,
thenvi+1/2, j+1/2 = vi, j+1/2.

End template

Given the edge and corner flux polygon templates, unsplit edge flux polygons at face
(i + 1

2, j ) are found according to the following template.

Unsplit Edge Flux Polygon Template

1. Apply theedge flux polygon template.
2. Apply thecorner flux polygon templateat (i + 1

2, j + 1
2).

3. If the upwinded transverse velocity at(xi+1/2, j+1/2, yi+1/2, j+1/2) is positive, subtract
the corner flux volume; otherwise add it.

4. Apply thecorner flux polygon templateat (i + 1
2, j − 1

2).
5. If the upwinded transverse velocity at(xi+1/2, j−1/2, yi+1/2, j−1/2) is positive, add the

corner flux volume; otherwise subtract it.

End template

Next, we discuss our temporal integration methods.

4.4. Time Integration

We now consider the time integration of (3b) for incompressible flows, whereby the
materialk volume fractionsf k,n at discrete time leveln are marched forward in time to
stepn+ 1. In performing this time integration, care must be taken to ensure that material
volumesVk remain volume-filling in each cell; i.e., material volumes must sum to the
total cell volumeV(=∑k Vk). For incompressible flow, an additional global volume-filling
constraint applies, namely material volume summed over the entire mesh must also be
conserved (this applies locally as well). For compressible flows, any local discrete volume-
filling errors can be absorbed by the fluid compressibility, but for incompressible flow,
this can lead to unacceptable errors. If compressibility (velocity divergence) is used to
absorb local volume-filling errors for incompressible flows, the integration accuracy of the
right-hand side of (3b) degrades accordingly.

A key point in our time integration scheme for the incompressible flow volume evolution
equations is the recognition that discrete velocity divergences are not necessarily zero, but
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rather a function of the convergence tolerance used in obtaining the linear system solutions.
To employ this “divergence correction,”∇ · u is added to both sides of (3b), giving

∂ f

∂t
+∇ · (u f ) = f∇ · u. (8)

By applying this correction, even for incompressible flows, we find that local and global
volume-filling constraints are adhered to much more closely. We integrate (8) forward in
time to advance volume fractions fromf k,n to f k,n+1 in the presence of incompressible
flows.

Our time integration schemes operate on two basic sets of cells: those that aremixedand
those that areactive. Before integration proceeds, those cells defined as mixed and active
are flagged appropriately. Mixed cells are labeled as such if:

1. Their volume fractionsf satisfyε≤ f ≤ 1− ε; or
2. Their volume fractionsf satisfy f > 1− ε; anda face is shared with an empty cell

having f <ε.

Active cells are labeled as such if at least one cell in their domain of dependence is mixed.
In two dimensions, the domain of dependence for operator-split time integration is three
cells along the current sweep direction, while it is a 3× 3 array of cells for unsplit time
integration. In flagging mixed and active cells,ε is a small number relative to zero, taken to be
1×10−12 for this work (appropriate for double precision arithmetic). This cell categorization
localizes algorithm computational work in the proximity of interface. For 2D computations
of topologically simple interfaces, we have found the work required to time-integrate the
volume evolution equations scales like the square root of the total grid size.

For an operator-split time integration scheme, (8) must be integrated twice in two di-
mensions (thrice in three dimensions), one integration per each sweep, and one sweep per
dimension. The volume fractionsf k,n+1 are therefore constructed from multiple, sequential
solutions to (8). In two dimensions, volume fractionsf k,n are advanced in the first sweep
to f̃ according to

f̃ i, j = f k,n
i, j −

δVi+δi, j+δ j − δVi−δi, j−δ j

Vi, j

+1t f k,n
i, j

Ai+δi, j+δ j ui+δi, j+δ j − Ai−δi, j−δ j ui−δi, j−δ j

Vi, j
, (9)

and in the second sweep̃f are advanced to their final valuesf k,n+1:

f k,n+1
i, j = f̃ i, j −

δVi+δi, j+δ j − δVi−δi, j−δ j

Vi, j

+1t f k,n+1
i, j

Ai+δi, j+δ j ui+δi, j+δ j − Ai−δi, j−δ j ui−δi, j−δ j

Vi, j
. (10)

Since our method is implemented on structured, orthogonal meshes in Cartesian (or azi-
muthally symmetric cylindrical) geometry, each sweep is associated with either anx (r ) or
y (z) direction. For sweeps in thex (r ) direction,(δi, δ j ) = (1/2, 0), and for sweeps in the
y (z) direction,(δi, δ j ) = (0, 1/2). Sweep direction order is alternated every time step to
minimize asymmetries induced by the sequential sweeping process.

Note the RHS rightmost terms in (9) and (10), which are the important divergence cor-
rection terms. These terms, needed to enforce volume-filling constraints, contain volume
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fractions f at differing time levels, explicit (time leveln) for the first sweep and implicit
(time leveln+ 1) for the second sweep. This form of the correction is found to be optimal
in practice, giving a net divergence correction that employs a volume fraction having an
intermediate time level. We now summarize our operator-split time integration template.

Operator-Split Time Integration Template

1. Flag all mixed, active, and isolated cells.
2. Compute the discrete velocity divergence∇ · ui, j in all flagged cells.
3. Reconstruct interfaces in all mixed cells according to the Interface Reconstruction

Template given in Section 4.2.
4. Compute edge volume fluxesδV in all flagged cells according to the Edge Flux

Polygon Template given in Section 4.3. If this is anx (r ) direction sweep, the fluxes
will be right-face fluxes; if this is ay (z) direction sweep, they will be top-face fluxes.

5. Advance volume fractionsf in time using (9) if this is the first sweep or (10) if this
is the second sweep.

6. Look for and conservatively redistribute any volume fraction undershoots (f < 0) or
over shoots (f > 1).

End template

As a final note, regarding operator-split time integration, if∇ · u = 0 is assumed, then
employing the identity (for 2D Cartesian geometry)

∂u

∂x
= −∂v

∂y

is often useful, especially for operator-split time integration discretizations of (3b). This
approach appears to improve the discrete conservation properties of operator-split incom-
pressible flow time integration [11, 35].

As opposed to an operator-split time integration of (8), an unsplit time integration scheme
advances time leveln volume fractionsf k,n to f k,n+1 with one equation, given for two
dimensions as

f k,n+1
i, j = f k,n

i, j −
δVi+1/2, j − δVi−1/2, j

Vi, j
− δVi, j+1/2− δVi, j−1/2

Vi, j
+1t

f k,n
i, j + f k,n+1

2
∇ · ui j .

(11)

Note the centered time level (n + 1/2) used for the volume fraction in the rightmost
divergence correction term on the RHS above. We now summarize our unsplit time in-
tegration template.

Unsplit Time Integration Template

1. Flag all mixed, active and isolated cells.
2. Compute the discrete velocity divergence∇ · ui, j in all flagged cells.
3. Reconstruct the interface in all mixed cells according to the Interface Reconstruction

Template given in Section 4.2.
4. Compute volume fluxesδV in all flagged cells according to the Unsplit Edge Flux

Polygon Template given in Section 4.3.
5. Advance volume fractionsf in time using (11).
6. Look for and conservatively redistribute any volume fraction undershoots (f < 0)

or overshoots (f > 1). The redistribution only acts on fluid in mixed cells, and in
proportion to the fluid volume donating or receiving the redistributed fluid volume.
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FIG. 12. Examples of two problems that can occur with the corner flux polygons in the presence of spatially
varying velocity fields. (a) Fluid is not fluxed. (b) Fluid is fluxed twice.

End template

We have presented operator-split and unsplit algorithms for the time integration of (8),
our volume evolution equation. These discretizations have assumed that the flow is incom-
pressible. We illustrate the ability of our method to track fluid bodies in simple translational
and rotational (hence, solenoidal) flow fields in Appendix B. Since these standard tests are
frequently used in the literature to assess advection methods, these translation and rotation
test results will facilitate comparison with other methods.

Problems can arise, however, when the velocity field possesses spatially varying vorti-
city. This spatial variation can sometimes lead to fluid being multiply fluxed or not fluxed
at all. These subtle fluxing errors, which we identify and correct, are shown in Fig. 12
for the two most common instances. We currently correct these situations with a local
redistribution algorithm. The tendency for these problems to occur is greater for algorithms
possessing multidimensional time-integration schemes that donot incorporate the corner
flux corrections to the edge fluxes (i.e., the method shown in Fig. 10c).

As long as the CFL condition is met, one-dimensional (edge) fluxes are without sys-
tematic problems. For velocity fields that vary in space, however, multidimensional fluxes
possess small inconsistencies. Small volumes of fluid can be fluxed twice or not at all.
As a consequence, there is a prospensity for methods based on multidimensional fluxes
to produce small over/undershoots. This can be overcome through the use of a numerical
velocity divergence definition,

∇ · u =
∑

k

∇ · (u f k), (12)

which follows from the governing equation and ensures that the fractional volumes are
volume filling. Equation (12) is not equivalent to the usual face-centered velocity divergence
for the unsplit time integration because of the choice made for transverse velocities. This
difference is present whenever the flow contains spatially varying vorticity.

5. RESULTS FOR VORTICAL FLOWS

Flows that induce simple translation or solid body rotation of fluid bodies do not ade-
quately interrogate interface tracking methods designed for topology changes. Translation
and rotation serve as useful debugging tests, but they are not sufficient for definitive analy-
sis, in-depth understanding, or final judgement. Difficult (yet controlled) test problems hav-
ing flows that bring about topology change elucidate algorithm strengths and weaknesses
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relevant to modeling interfacial flows. Also, with controlled test problems, assessment of
the interface tracking method is not obscured by subtleties of physics and algorithms in the
flow solver.

Literature surveys indicate that uniform translation is the customary barometer for in-
terface tracking methods. Solid body rotation tests accompany translation tests in more
complete analyses. Typical examples of such tests can be found in [8, 20]. An acceptable
tracking method must translate and rotate fluid bodies without significant distortion or
degradation of fluid interfaces. Mass should also be converged rigorously in these cases.
Translation and solid body rotation, however, enable only aminimalassessment of interface
tracking algorithm integrity and capability because topology change is absent. Additional
tests involving flows with nonuniform vorticity must be considered before a complete as-
sessment can be made.

We therefore consider in this section two new 2D test problems that sufficiently chal-
lenge algorithm capabilities, provide meaningful metrics for measurement of algorithm
performance, and are easy to implement. These problems, characterized by flows hav-
ing nonconstant vorticity, were introduced recently in [15] as proposed metrics for any
method designed to track interfaces undergoing gross topology change. Beside inducing
topology change, the test problems are representative of interfacial flows in real physical
systems, e.g., instabilities such as the Rayleigh–Taylor, Richtmeyer–Meshkov, and Kelvin–
Helmholtz instabilities, where sharp gradients in fluid properties lead to vortical flow. A
proper assessment of interface tracking methods should therefore impose strong vorticity
at the interface.

Our test problems possess vortical flows that stretch and potentially tear any interfaces
carried within the flow. The first problem contains a single vortex that will spin fluid
elements, stretching them into a filament that spirals toward the vortex center. The flow field
is taken from the “vortex-in-a-box” problem introduced in [38, 39]. The second problem
has a flow field characterized by 16 vortices as introduced in [40]. This flow field causes
fluid elements to undergo large topological changes. In the converged limit, fluid elements
will not tear, instead forming thin filaments. The flow field in both problems is solenoidal,
and is given cosinusoidal time-dependence following Leveque [41]. The temporal cosine
term gives the flow the nice property of returning any fluid configuration to its initial state
after one period. By forcing the flow to return to its initial state, quantitative comparison
and evaluation can be simply computed with the help of error norms and convergence tests.

5.1. Test Problems

All test problems have identical initial conditions: a circle (radius 0.15) is centered at
(0.50, 0.75) in a unit square computational domain. The domain is partitioned with either
322, 642, or 1282 orthogonal, uniform cells. All boundaries are periodic. A scalar field
is initialized to unity and zero inside and outside the circle, respectively. For those cells
containing the circular interface, the scalar field is set to a value between zero and one, in
proportion to the cell volume truncated by the circle. This field represents a characteristic
(or color) function, which for our purposes is the fluid volume fraction for a circular fluid
body, i.e., the volume fraction is 100% inside the circle and 0% outside.

Single vortex. A single vortex is imposed with a velocity field defined by the stream
function [38],

9 = 1

π
sin2(πx) sin2(πy), (13)
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FIG. 13. (a) “Exact” solution att = 3 for a circular fluid body placed in the single-vortex flow field on a 1282

grid. (b) “Exact” solution att = 0.5 for a circular fluid body placed in the deformation flow field on a 1282 grid. In
both cases the body is represented and tracked with analytical marker particles. (a) Single-vortex. (b) Deformation
field.

whereu=−∂9/∂y andv= ∂9/∂x. This is a solenoidal velocity field, which will deform
bodies and promote topology changes. When the circular fluid body is placed in this field,
it stretches and spirals about the center of the domain, wrapping around the center approx-
imately two and a half times byt = 3, as shown in Fig. 13a. This represents an “exact”
solution because fluid elements in the body for this case are represented with marker par-
ticles that move with the analytic velocity field given by (13) above. The marker particles
are initialized in a uniformly spaced 4× 4 array in each cell falling completely inside the
circular fluid body. The 4× 4 particle array is truncated in cells containing the circular
interface and is absent in cells lying outside the circular interface.

Deformation field. A complex velocity field given by the stream function [40]

9 = 1

4π
sin

(
4π

(
x + 1

2

))
cos

(
4π

(
y+ 1

2

))
(14)

induces even more radical deformation and topology change of fluid bodies, providing a
more stringent test than the field given by (13). This velocity field induces large deformation
of the circular body byt = 3, as is evident in Fig. 13b, where results with the analytic particle
method are shown. By this time, a large fraction of the circle has been entrained into the
two nearest vortices, with a smaller portion (the thin filaments) having been entrapped by
two nearby vortices.

Time-reversed flowfields.Following Leveque [41], the single vortex and deformation
velocity fields can be multiplied by cos(π t/T), giving a flow that time-reverses (returns to
its initial state) att = T . In most of our tests we choose a periodT = 2, hence the circular
body will undergo large deformations until the first half period (t = 1), whereupon the flow
will reverse, returning the circle to its initial undeformed state at the full period (t = 2). Error
measurements are performed on the differences in data observed betweent = 0 andt = T .
These differences should ideally be zero, as thet = 0 andt = T states should be identical.
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5.2. Results

The performance of our volume-tracking method on these tests in assessed with both
qualitative and quantitative fidelity measures. First, a qualitative assessment is made by
comparing graphical results with the marker particle results shown previously. Second, a
quantitative assessment is made with convergence results derived from error estimates. For
the following tests, unless otherwise stated, we employ a CFL number of one (based on
the maximum velocity in the domain) and use Pilliod’s method for estimating the interface
normaln.

Single vortex. This velocity field stretches and tears the initially circular fluid body as
it becomes progressively entrained by the vortex. The entrainment is manifested as a long,
thin fluid filament spiraling inward toward the vortex center. By integrating to late times,
it is possible to observe the behavior of our volume-tracking method under rather extreme
circumstances, whereby filaments become thinner than is supportable by the computational
mesh. Convergence results are obtained by time-reversing the flow using Leveque’s cosine
term. As the reversal periodT becomes longer, the fluid body evolves further away from its
initial circular configuration; hence, it must undergo increasingly complicated topological
change to reassemble properly att = T .

Convergence results for the single vortex velocity field indicate that our method is remark-
ably resilient. The method exhibits second-order convergence, even for long periods (T = 8),
where appreciable interface tearing and topological change has occurred. This is indicated
by theL1 error norms and convergence results shown in Table 2 for three different reversal
periods. Figure 14 illustrates that solution errors (roughly a measure of phase error) are more
evident for longer reversal periods. The solution quality, however, increases remarkably as
the grid is refined (shown here for a 322 grid). Convergence is aided by the regularity of the
velocity field, but the improvement with grid refinement is quite encouraging.

The under-resolved behavior of our PLIC method on the single-vortex problem is illus-
trated in Fig. 15. Here the solution becomes poor when interface topology is not resolved,
i.e., as exhibited by single filament breaking into a series of fluid clumps that are each sup-
portable by the reconstruction method. Byt = 3.0 (Fig. 15d), the body has fragmented into
numerous pieces. Despite the breakup, however, solution convergence does occur under
grid refinement.

This behavior is reasonable and expected, given the assumptions inherent in the recon-
struction, namely a piecewise linear interface approximation constrained by mass conser-
vation. The breakup exhibited in Fig. 15 can be interpreted as an application of “numerical
surface tension” along interfaces that are resolved inadequately. High curvature regions are

TABLE 2

L1 Error Norms and Convergence Rates for a Circular Fluid Body Placed

in the Time-Reversed, Single-Vortex Flow Field

Grid Error (T = 0.5) Order (T = 0.5) Error (T = 2.0) Order (T = 2.0) Error (T = 8.0) Order (T = 8.0)

322 7.29× 10−4 2.36× 10−3 4.78× 10−2

2.36 2.01 2.78
642 1.42× 10−4 5.85× 10−4 6.96× 10−3

1.86 2.16 2.27
1282 3.90× 10−5 1.31× 10−4 1.44× 10−3
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FIG. 14. Results for a circular fluid body placed in the time-reversed, single-vortex flow field on a 322 grid.
(a) Reconstructed interfaces att = T for T = 0.5. (b) L1 error contours att = T for T = 0.5. (c) Reconstructed
interfaces att = T for T = 2.0. (d) L1 error contours att = T for T = 2.0. (e) Reconstructed interfaces at
t = T/2 for T = 8.0. (f) Reconstructed interfaces att = T for T = 8.0.

those unresolvable regions having interfaces with a radii of curvature less than roughly
a mesh spacing. The piecewise linear interface approximation immediately flattens these
regions, effectively applying numerical surface tension. Thin filament regions can also be
the recipients of numerical surface tension, because poor linear reconstructions occur in
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FIG. 15. Results for long time integration of a circular fluid body placed in the single-vortex flow field on
a 322 grid. (a) t = 0.75. (b) t = 1.50. (c) t = 2.25. (d) t = 3.00. (e) t = 3.75. (f) t = 4.50. (g) t = 5.25.
(h) t = 6.00.

these regions from inaccurate interface normal estimations. Numerical surface tension in
these high curvature and thin filament regions can be easily reduced (well below physical
levels) with increased refinement.

Deformation field. The deformation velocity field given by (14) poses a test more diffi-
cult than the single vortex, forcing the circular fluid body through quite extreme topological
changes. Time reversal is again used to obtain quantitative results. The initial position of
the circular body falls directly between two vortices; hence, we find that the results fail to
converge for longT . This is evident in Table 3, where second-order convergence is real-
ized only forT = 1.0. For longer periods, the results converge to only first order. The lack
of qualitative similarity between the solutions obtained on the two finest grids atT = 4
(Fig. 16) is evidence for the lower convergence.

In Fig. 17 the deformation velocity field shows its ability to tear apart the circular body.
Despite the severity of the interface deformation and topology change, mass conservation
is maintained and the solution bears a qualitative resemblance to the true solution. At this
coarse resolution (322), the solution is not high quality, but its qualitative correctness exhibits
the robustness we are seeking in an interface tracking method.
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FIG. 15—Continued

We conclude our deformation field examples with a brief disgression into operator-split,
time-integration methods. All results presented to this point are obtained with our unsplit
time-integration scheme detailed in Section 4.4. When an operator-split, time-integration
scheme is used for these tests, the observed convergence rates and error norms are similar
to the presented unsplit results.

Operator-split, time-integration methods, however, are inferior for two important reasons:
efficiency and symmetry preservation. Because volume tracking methods are dominated by

TABLE 3

L1 Error Norms and Convergence Rates for a Circular Fluid Body Placed

in the Time-Reversed, Deformation Flow Field

Grid Error (T = 1.0) Order (T = 1.0) Error (T = 2.0) Order (T = 2.0) Error (T = 4.0) Order (T = 4.0)

322 5.20× 10−3 1.96× 10−2 4.68× 10−2

1.62 0.81 1.52
642 1.69× 10−3 1.12× 10−2 1.63× 10−2

1.95 0.91 0.84
1282 4.36× 10−4 5.95× 10−3 9.08× 10−2
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FIG. 16. Results for a circular fluid body placed in the time-reversed, deformation flow field att = T for
T = 4. (a) 642 grid. (b) 1282 grid.

FIG. 17. Results for a circular fluid body placed in the deformation velocity field on a 322 grid. (a)t = 0.50.
(b) t = 1.00. (c)t = 1.50. (d)t = 2.00.
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FIG. 18. Results att = 4.0 for a circular fluid body placed in the deformation flow field using an operator-
split time-integration method on a 322 grid. In (a) the flow is time-reversed withT = 4. These results should be
compared with the unsplit results in Fig. 19. (a) Time-reversed flow. (b) Non-time-reversed flow.

the cost of reconstructing the interface, an operator-split method is roughly twice as expen-
sive as an unsplit method (in 2D) because one extra reconstruction is required. Operator-
splitting also fails to maintain symmetry, even when sweep directions are alternated. This
is evident in the results of Fig. 18, which illustrate that operator-split time-integration so-
lutions are inferior to those of our unsplit scheme (shown in Fig. 19). For these reasons we
prefer methods based on unsplit time-integration schemes.

The results presented in this section are evidence for the topological changes our volume
tracking method must manage while tracking an initially circular fluid body placed in the
vortex and deformation flow fields. For performance of other tracking methods on these
same problems, see the results in [15]. The methods tested in [15] are those based on
particles, level sets [42], and high resolution upwind schemes such as PPM [43].

FIG. 19. Results att = 4.0 for a circular fluid body placed in the deformation flow field using an unsplit time-
integration method on a 322 grid. In (a) the flow is time-reversed withT = 4. These results should be compared
with the operator split results in Fig. 18. (a) Time-reversed flow. (b) Non-time-reversed flow.
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6. CONCLUSIONS

A new second-order-accurate method for the volume tracking of material interfaces
in two dimensions has been presented. The algorithm is based upon solutions of material
volume evolution equations in which material volume fluxes are estimated geometrically.
The volume fluxes are defined as the truncation volumes formed when reconstructed piece-
wise linear interfaces pass through total volume fluxes bounded by characteristic flow lines.
The piecewise linear reconstruction ensures second-order spatial accuracy and the char-
acteristic volume fluxes ensure second-order temporal accuracy (via a multidimensional
unsplit time integration scheme). A template of the simple geometric functions needed to
compute the material volumes fluxes is provided in detail sufficient enough for implemen-
tation. Motivating the development of this method is our need for high-fidelity models for
topologically complex interfacial flows; hence, we have integrated our method with flows
inducing gross interface topology changes, whereby an initially simple interface configu-
ration is subjected to a variety of controlled vortical and shearing flows. Numerical results
for these complex topology tests provide convincing evidence for the algorithm’s excellent
solution quality and fidelity.

Several aspects of this volume-tracking methodology deserve further attention. Numerical
surface tension is brought about when interfaces are approximated as piecewise linear, and
this effect needs to be understood and quantified, especially for those interfacial flows where
physical surface tension is important. A three-dimensional (piecewise planar) extension of
this method that maintains formal second-order accuracy is also of interest, in particular
the algorithms for temporal integration and plane normal estimation.

APPENDIX A: FINDING THE INTERFACE NORMAL

Unlike the line constantρ, the method used determines that the interface normaln is
arbitrary; i.e., it is not constrained by volume conservation considerations. The algorithm
used in determiningn is nonetheless crucial, being a key distinguishing aspect of volume-
tracking algorithms. Simple estimations forn can cause a volume tracking algorithm to
exhibit overall first-order tendencies, i.e., an inability to reproduce linear interfaces. For
example, a method forn that forcesn to align with mesh logical coordinates yields a low-
order volume-tracking algorithm reminiscent of the SLIC method. Other than the temporal
integration method (discussed in Sections 4.3. and 4.4), the method used for estimation
of n plays a principal role in the overall accuracy of a volume tracking algorithm. In the
following, we will first discuss three methods for computingn, then illustrate below the
impact of usingn resulting from these methods on the reconstruction of simple circular and
square volume distributions.

A.1. Youngs’ (Least Squares)

Our first method is an extension of Youngs’ second method [21] to general grids [32].
Youngs’ second method for estimation ofn was originally developed for 3D tensor-product
meshes in which cells are orthogonal bricks having generally different widths. The basic
algorithm invokes straightforward (yet wide stencil) finite-difference approximations for
the volume fraction gradient (∇ f ) to define the interface normaln [21]. It is robust and
simple, but unfortunately first-order accurate, capable of reproducing a linear interface only
in certain isolated cases.
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We have extended Youngs’ finite difference approximations for∇ f to 2D or 3D arbitrary-
connectivity (fully unstructured) meshes. The method is based on the work of Barth [44],
who has devised innovative least squares algorithms for the linear and quadratic reconstruc-
tion of discrete data on unstructured meshes. Second (and higher) order accuracy has been
demonstrated on highly irregular (e.g., random triangular) meshes. In this approach, volume
fraction Taylor series expansionsf TS

i are formed from each reference cell volume fraction
fi at pointxi to each cell neighborfk at pointxk. The sum( f TS

i − fk)
2 over alln immediate

neighbors is then minimized in the least squares sense using the normal equations. ThisL2

norm minimization will yield the volume fraction gradient∇ fi as solutions to the linear
system (in 2D)

AT Ax = ATb, (15)

where

A =

ωk(xk − xi ) ωk(yk − yi )
...

...

ωn(xn − xi ) ωk(yn − yi )

 , b =

ωk( fk − fi )
...

ωn( fn − fi )

 ,
whereωk = 1/|xk − xi |t (we taket = 2) and

x =
(
∇x fi
∇y fi

)
.

The normal is then computed as

n =


∇x fi
|∇ fi |
∇y fi
|∇ fi |

 , (16)

where

|∇ fi | =
√
(∇x fi )2+ (∇y fi )2.

Here we choose the eight nearest neighbors on a two-dimensional Cartesian grid (that is,
all neighbors sharing a vertex).

Least squares reconstruction methods, such as that implied by the linear system above,
are quite powerful and attractive. They are not married to any particular mesh topology
or dimensionality; hence they are easily amenable to any (unstructured) 2D or 3D mesh.
All that is required is a set of discrete data points described by their data values and their
physical location.

Despite the attractive characteristics of least squares methods, we have yet to construct
a linear system whose solution yields interface normalsn that are generally second-order
accurate. We will continue to pursue this methodology, however, because it offers perhaps
the best possibility (over other methods) for a generally second-order accuraten estimation
in 3D. Careful construction of data-dependent weights might provide a linear system that
yields such a second-order discretization.
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A.2. Error Minimization

In the second methodn does not result from an explicit expression, but rather from
a least squared error minimization procedure that is iterative (but local). This method is
shown to be second-order accurate. The second method for estimation ofn is based upon
the recent volume tracking work of Pilliod [10], in which particular scrutiny is paid to
the interface reconstruction step. They conclude that methods for estimatingn based on
a minimization of error (by some measure) are optimal. Developed as a result of this
analysis was an algorithm forn that, like our first method, is also guided by a least squares
prescription for error. In the least squares procedure, reconstructed interface line segments
are extrapolated into nearest-neighbor cells (all cells bordering the reference mixed cell), and
the nearest-neighbor truncation volumes are computed (in addition to the reference mixed
cell). Differences between nearest-neighbor truncation volumes and their actual material
volumes are minimized in the least squares sense by iteratively changing the reference
mixed cell value ofn until convergence is achieved. This method is second-order in the
sense that it is able to reconstruct linear interfaces exactly.

Unfortunately, the least squares method can be prohibitively expensive, especially in
3D, because interfaces must be reconstructed in all mixed cells bordering the reference
mixed cell each iteration that is required to findn. For 2D tensor-product Cartesian meshes,
however, this expensive iterative procedure can be circumvented with an innovative “fast
least squares” (FLS) procedure [10], making the method viable.

A.3. Swartz’s Method

The final method we consider for estimatingn is based on the work of Blair Swartz
[45]. This iterative procedure, which also preserves linear interfaces (is second-order), was
shown recently to converge quadratically on generally irregular 2D meshes [31]. The basic
algorithm consists of several steps, shown schematically in Fig. 20. First, a reasonable
estimate forn is made (e.g., using Youngs’ second method); then the interface line segment
is reconstructed according to the Interface Reconstruction Template given in Section 4.2 of
this paper. Second, this normal is assigned to a selected mixed cell bordering the reference
mixed cell, and a linear interface is reconstructed in the border mixed cell (Fig. 20a). Third,
a line is defined whose endpoints are the interface centroid in the reference mixed cell and
the interface centroid in the border mixed cell (Fig. 20b). The normal to this line (connecting
the centroids) defines the new guess forn. This process is repeated until convergence.

In applying the Swartz algorithm to interface reconstruction, we have found the following
modifications useful. First, the stencil should be symmetric; i.e., all mixed cells bordering
the reference mixed cell (in a 3×3 block) should contribute to the new guess forn, not just
one selected border cell. An inverse-distance weighted contribution to the new guess forn
is used for all border mixed cells. Our modified Swartz algorithm forn proceeds according
to the following template:

Modified Swartz Interface Normal Template

1. Guess a normaln for the interface line in the reference mixed cell.
2. Givenn, compute the interface line position in the reference mixed cell by finding the

interface constantρ in (4).
3. Using the reference mixed cell normaln, compute interface line positions in all mixed

cells bordering the reference mixed cell (within a 3× 3 stencil).
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FIG. 20. Illustration of the basic Swartz algorithm steps required to find the interface normaln in a reference
mixed cell, shown here as the center cell of a 3×3 stencil. (a) An initial guess forn results in an initial reconstructed
interface line in the reference mixed cell. (b) A new guess forn is the normal to the line connecting interface
line centroids of the reference cell and a selected bordering mixed cell. (c) If the interface has curvature, multiple
bordering mixed cells are needed to find the new guess forn 31.

4. Connect the interface line centroid in the neighboring mixed cell with an interface
line centroid in the cell being reconstructed. Repeat for all mixed cells in the stencil.

5. Define a new normalnnew as the average of all of the lines formed in the previous
step (using an appropriate weighting such as the inverse distance of the neighboring
line centroid to the cell being reconstructed).

6. If nnew differs fromn by some prescribed tolerance, go to step (2).

End template

A modified Swartz algorithm based on the template above yields a second-order nor-
maln for generally nonlinear interfaces (those having curvature). This algorithm performs
equally well in 2D Cartesian and azimuthally symmetric cylindrical coordinate systems.
It can also find a second-order normal on meshes more general than the tensor-product
meshes required for Youngs’ second method or the least squares minimization method. For
example, it has been applied successively on 2D nonorthogonal, unstructured meshes [31].
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Extension to three dimensions also appears to be a straightforward exercise. The modified
Swartz method does not, however, lack restrictions or disadvantages. First, it can be pro-
hibitively expensive, especially in 3D, because interfaces must be reconstructed in all mixed
cells bordering the reference mixed cell, for each iteration required to findn (just like the
least squares method). Second, it is outperformed by Youngs’ second method and the least
squares method when the interface is poorly resolved (because of the lack of bordering
mixed cells). Otherwise, it is close in behavior to the procedure described next, and, as
such, will not be explored in detail for dynamic problems.

A.4. Reconstruction Accuracy

The accuracy of these interface normal algorithms is most easily assessed by analyzing
estimates ofn operating on discrete volume data that replicates known (exact) interface
geometries, such as a circle or square. If the variousn estimates are used to perform
piecewise linear interface reconstructions on the data, the differences and errors can be
visualized, as shown in the next section.

We now assess the accuracy of the interface normal algorithms detailed in the previous
section by applying them to known circular and square distributions of volume data. To
avoid artificial regularity of the results, we offset the circle and square centers (relative to
mesh logical coordinates). For all tests, we partition a unit square domain with from 102

to 1602 orthogonal, uniform cells. Discrete volume data is initialized on the domain to
replicate either a circle (radius 0.368) centered at (0.525, 0.464) or a square (side length
0.512) centered at (0.468, 0.541). The discrete volume initialization is exact in every cell,
so we expect computational values of the interface normalsn to converge to the analytical
values as the mesh is refined.

Graphical pictures of the piecewise linear interface reconstructions enable a qualitative
assessment of eachn algorithm, as shown in Figs. 21–23. Results are displayed for the
coarsest grid, where “reconstruction errors” are most evident. Quantitative error assessments
are possible for these known geometries if one defines the reconstruction error as the volume
integral of the difference between actual interface and the linear representation. With errors
quantified, convergence rates can be computed, as shown in Tables 4–6. For the circular

FIG. 21. Piecewise linear reconstructed interfaces based on Youngs’ second method for the interface normal
n on a 10× 10 grid. (a) Offset circle. (b) Offset square.
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FIG. 22. Piecewise linear reconstructed interfaces based on Swartz’s method for the interface normaln on a
10× 10 grid. (a) Offset circle. (b) Offset square.

distribution, which has no curvature singularities, we expect each interface normal method
to converge. For the square, on the other hand, curvature singularities (the corners) will
preclude convergence. Along with inhibiting convergence, curvature singularities will also
be the site of the most flagrant reconstruction errors.

The errors measured on these simple tests give rise to some interesting observations.
Youngs’ second method (which is first order) surprisingly exhibited the lowest errors on the
coarsest grids, but its lower convergence rate eventually led to errors that exceeded the other
methods as the grid is refined. In general, for large curvatures (relative to mesh spacing),
Youngs’ second method is quite robust, which is in contrast to the second-order Swartz
method, as discussed later.

Results for Youngs’ second method are given in Table 4 and Fig. 21. The convergence
rate deteriorates as the grid is refined, approaching first-order. A qualitative assessment of
the reconstruction (Fig. 21) is favorable, but the square corners present the method with
more problems than the second-order Swartz or least squares methods.

FIG. 23. Piecewise linear reconstructed interfaces based on the least squares method for the interface normal
n on a 10× 10 grid. (a) Offset circle. (b) Offset square.
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TABLE 4

L1 Circle Reconstruction Error Norms Using Youngs’

Second Method for the Interface Normal n

Grid Error Order

102 2.04× 10−3

1.59
202 6.79× 10−4

1.38
402 2.60× 10−4

1.36
802 1.01× 10−4

0.93
1602 5.29× 10−5

Swartz’s method produces second-order results, as is evident in Table 5. Absolute errors,
however, are larger than those exhibited by Youngs’ second method on the coarser grids. This
can be seen in the quality of the coarse-grid reconstruction shown in Fig. 22. The piecewise
linear segments along the circle (Fig. 22a) are not as continuous as those generated with
Youngs’ second method in Fig. 21. This coarse-grid degradation may be indicative of the
problems encountered with Swartz’s method on difficult transport problems, where fluid
bodies with complex topologies (high curvatures) can be created.

Finally, consider the reconstruction errors resulting from the least squares error method.
This method is also second-order, as seen in Table 6. While the absolute errors in Table 6
are slightly larger than the Swartz method, the reconstruction solutions (Fig. 23) are judged
to be superior for both the circle and the square. The reconstruction is more continuous for
the circle and the singularities in the corners are more localized.

The cost of each reconstruction technique varies with the second-order accurate methods
being much more expensive than the first-order methods. Youngs’ method is approximately
five times cheaper than the fast least squares minimization. In turn, the fast least squares
is slightly less than three times as cheap as the full least squares minimization or Swartz’s
method.

TABLE 5

L1 Circle Reconstruction Error Norms Using Swartz’s

Method for the Interface Normal n

Grid Error Order

102 2.71× 10−3

1.98
202 6.84× 10−4

2.40
402 1.29× 10−4

2.07
802 3.08× 10−5

2.22
1602 6.63× 10−6
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TABLE 6

L1 Circle Reconstruction Error Norms Using the Least

Squares Method for the Interface Normal n

Grid Error Order

102 3.21× 10−3

2.18
202 7.08× 10−4

2.29
402 1.45× 10−4

1.94
802 3.78× 10−5

2.01
1602 9.38× 10−6

APPENDIX B: TRANSLATION AND ROTATION TESTS

Since translational and rotational flows do not induce topology change, the volume frac-
tions associated with fluid bodies entrained in these flows are known exactly. In such cases,
error norms can be defined based on some positive-definite measure of the differences ob-
served between the computed and exact values off . We choose to estimate computed errors
in these problems with anL1 norm defined as

EL1 =
∑
grid

Vi, j

∣∣ f computed
i, j − f exact

i, j

∣∣. (17)

TheEL1 error defined above has units of area (or volume in 3D); therefore, its change with
mesh size can be used to infer rates of convergence.

B.1. Test Problems

For both the translation and rotation test problems, a circular fluid body is placed in a unit
square computational domain that is partitioned with either 322, 642, or 1282 orthogonal,
uniform cells. The circular body is represented with a scalar field that is unity and zero
inside and outside the circle, respectively. For those cells containing the circular interface,
the scalar field is set to a value between zero and one, in proportion to the cell volume
truncated by the circle. This field represents a characteristic (or color) function, which for
our purposes is the fluid volume fraction for a circular fluid body, i.e., the volume fraction
is 100% inside the circle and 0% outside. All boundaries are periodic. For these tests, we
use the unsplit time-integration scheme given by (11) and the least squares method for
estimating the interface normaln.

Simple translation. A uniform and constant velocity field having positive, equal com-
ponents is imposed everywhere in the domain. This solenoidal field will cause fluid bodies
to translate diagonally across the mesh at a 45◦ angle. The circular fluid body (radius 0.25),
initially centered at (0.50, 0.50), should return to its initial position after 1 time unit, allow-
ing error measurement with (17). A CFL number of1

2 is used. The body should not change
shape as a result of this movement.
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FIG. 24. Performance of a piecewise constant tracking method in translating and rotating an initially circular
fluid body on a 322 grid. Reconstructed interfaces are shown for the body (a) after being translated at 45◦ for
a distance of two domain diagonals, and (b) after being rotated one revolution. (a) Translation. (b) Rotation
(magnified view).

Solid body rotation. A constant-vorticity velocity field is imposed at the center of the
domain. This solenoidal field will cause all fluid bodies to rotate around this center. The
circular fluid body (radius 0.15), initially centered at (0.50, 0.75), should return to its initial
position afterπ time units, allowing error measurement with (17). A CFL number of1

2 is
used, based on the maximum velocity in the domain. The body should not change shape as
a result of this rotation.

B.2. Results

Let us first assess the ability of traditional piecewise constant volume tracking methods to
translate and rotate the circular body. We employ a piecewise constant method that represents
a combination of the SLIC and VOF methods.3 The circle is shown after translating two
diagonals of the computational domain in Fig. 24a and after rotating one revolution in
Fig. 24b. In both cases the results are inferior to the piecewise linear results depicted in
Figs. 25 and 26. Computed piecewise constantL1 errors are one to two orders of magnitude
larger than the coarsest-grid (322) piecewise linear results, with the differences becoming
even larger as the grid is refined. Convergence for this piecewise constant scheme is at best
first order.

Two important features are evident in Fig. 24 that are typical of piecewise constant volume
tracking methods. First, the circular body in Fig. 24a remains in one piece after translation,
but the circle’s topology has become square-like by virtue of its interfaces aligning with the
grid coordinates. This misalignment is the direct result of the imposed horizontal and vertical
interface reconstructions associated with piecewise constant approximations. Second, after
rotating the circular body one revolution in Fig. 24b, the circle has lost small bits of fluid
that have been unphysically ejected from the main body. This unacceptable flotsam creation
always accompanies a piecewise constant method when the flowfield has appreciable spatial
variation.

3 Like the VOF method, an interface normaln computed from a 3× 3 stencil is used to determine interface
orientation. Like the SLIC method, the interface is then reconstructed vertically or horizontally, depending upon
the relative magnitudes of then components.
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TABLE 7

L1 Error Norms and Convergence Rates for a Circular Fluid Body Translated Two Domain

Diagonals at Three Different Angles to the Grid

Grid Error (0◦) Order (0◦) Error (26.565◦) Order (26.565◦) Error (45◦) Order (45◦)

322 1.97× 10−4 1.99× 10−3 6.21× 10−4

2.67 2.16 1.33
642 3.09× 10−5 4.45× 10−4 2.47× 10−4

2.50 2.03 2.27
1282 5.48× 10−4 1.09× 10−4 5.10× 10−5

FIG. 25. Performance of the piecewise linear volume tracking method in translating an initially circular fluid
body at 45◦ for a distance of two domain diagonals on a 322 grid. (a) Reconstructed interfaces. (b)L1 error
contours.

FIG. 26. Performance of the piecewise linear volume tracking method in rotating an initially circular fluid
body for one revolution on a 322 grid. (a) Reconstructed interfaces. (b)L1 error contours.
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TABLE 8

L1 Error Norms and Convergence Rates for a Circular Fluid

Body Rotated One Revolution

Grid Error Order

322 1.61× 10−3

2.19
642 3.54× 10−4

1.98
1282 8.95× 10−5

Recall that our second-order unsplit time integration is used for the piecewise constant
method that generated the results in Fig. 24, so accuracy degradation is solely due to the
piecewise constant geometry approximation. This crude approximation fails to pass simple
translation tests, as shown in Fig. 24.

Our piecewise linear scheme, on the order hand, preserves the circular shape after transla-
tion, as shown in Fig. 25. The reconstructed interfaces and error contours are isotropic with
respect to flow, i.e. exhibiting no bias toward flow direction. Errors are slightly higher at 45◦

angular increments around the circle (Fig. 25b). Mass conservation is exact. Convergence
rates based on (17) are generally second order, but they exhibit some dependence on the flow
direction (relative to the grid), as shown in Table 7. The convergence rate is clearly second
order in most cases, with the highest errors generated by the 26.565◦ translation. These
excellent translation results should be expected from a useful interface tracking method.
Excellent translation performance is necessary,but not sufficient, for a method required to
track interfaces in complex topology flows.

Solid body rotation results add little additional insight relative to the translation results,
except that phase errors are now more apparent, as shown in Fig. 26b. Second order accuracy
is again exhibited, as shown in Table 8. Neither the translation or rotation problems pose
serious problems for a well-designed interface tracking method. They will expose diffusion
and dispersion problems typical of standard advection methods, but are not sufficient for
methods designed specifically for interfaces. For both translation and rotation, the circular
shape is preserved; hence we can declare victoryfor now, but more stringent tests are
necessary.
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